
Atomic Diffusion Bonding as Permanent wafer bonding at room temperature

What is ADB?

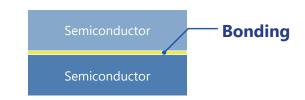
In vacuum

- Room temperature bonding
- ✓ Any substrates available
- ✓ Various bonding materials

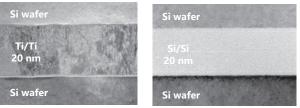
Equipment

BC7000 for ø100 / ø150 mm

BC7300 for ø200 / ø300 mm

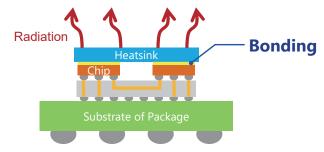

- Multi-processing in ultra-high vacuum
- High throughput
- Low particle level control

CANON ANELVA CORPORATION


Atomic Diffusion Bonding as Permanent wafer bonding at room temperature

Using Various Metal Films

As a contact metal

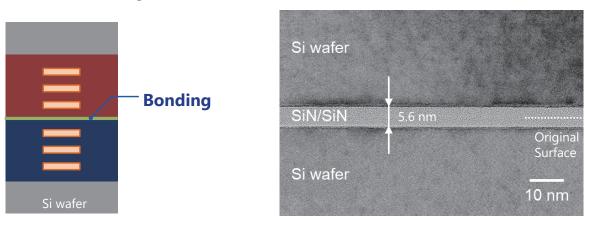

Fig.1 Engineered Substrate

* Courtesy of Shimatsu Laboratory, Tohoku University

Reliable conductive bonding

As a thermal conductive layer

Fig.2 2.5D packaging


	ADB (Metal interlayer)	Solder bonding
Thermal Conductivity [W/mK]	154	50 *1)
Bonding layer [µm]	0.11 Ta (5 nm) / Au (50 nm) on each side	50 ^{*1)}
Thermal Resistance [m ² K/W]	7.1×10 ⁻¹⁰	1.0×10 ⁻⁶

*1) Thickness & thermal conductivity of the solder bonding is estimated value

Innovative heat management for high performance devices

Using Various Dielectric Films

As a thin isolation layer

Fig.3 CFET structure

Ideal for future advanced logic device

CANON ANELVA CORPORATION